Apply
College of Engineering, Technology, and Architecture

BS in Computer Engineering

At a Glance

The Computer Engineering program will allow you to start with a rigorous engineering foundation in mathematics, the physical sciences, and a foundation in computer hardware and computer science

Full Time
Rolling Admission

Degrees Offered

Total Credits

Bachelor of Science

133

Overview

We are living in the era of the Internet. Almost any device or issue you can think of (computer networks, cybersecurity, controls for robotics, telephones, and more) involves computer hardware and software. Devices enhance how we work, play, and communicate. The design, development, and maintenance of devices involve critical teams of hardware and software specialists. That is where the computer engineering program comes in.

Quick Links

Ready to take the next step?
Apply today.

Questions?
Contact Program Director Ying Yu for more information.

Please access accreditation information here.

About the Major

computer-engineering-electrical

Various skills and expertise are needed in this area, from traditional hardware design and engineering to computer programming. Unfold these areas and more through this program! The most exciting new area involves bridging the gap between hardware and software to focus on applying computer systems to real-world problems. Gain the necessary skills to design, build, repair, and maintain the equipment and tools used in everyday life.

About the Minor

This computer engineering minor provides both students matriculating into bachelor’s degree programs in other Colleges of the University, particularly the sciences, and the other engineering majors with an introduction to the discipline of computer engineering.

Degree Requirements

For more information, and to see a complete list of degree requirements, visit the Course Catalog.

Core Classes

  • ECE 213 | Electric Circuit Analysis I
  • ES 242 | Engineering by Design
  • ECE 336 | Computer Systems Laboratory
  • ECE 361 | Electronics Fundamentals
  • ECE 482 | Capstone Design I

Electives

Your choice of program electives, as well as senior project sequence, allows you to tailor the program for emphasis on hardware or software. Our computer engineering students take computer science courses along with students in our College of Arts and Sciences. With the appropriate choice of electives, you can earn a minor in computer science.

Social sciences, humanities, and University Interdisciplinary Studies (UIS) courses offer you the opportunity to broaden your perspective and better understand the role and responsibility of a Computer Engineer in society.

Additional Requirements

Students must complete a 4-credit lecture and laboratory course in general chemistry. Students also must complete two 4-credit lectures courses in calculus-based physics (including laboratory components), thus meeting the depth requirement. Students complete a mathematics sequence including Calculus I and II, Differential Equations. (These courses are prerequisites for several computer engineering courses).

Career Outlook

computer-engineering

Our computer engineering program is designed to prepare you for career success.

Computer engineers solve problems to improve our lives. The growth of computer disciplines is driven by a virtual circle. Advances in computer technology lead to entirely new products and markets that were previously not possible or even imagined, which in turn lead to new companies that produce further advances with innovative breakthroughs. In time, every aspect of society is affected.

Our graduates go on to work at companies and computer-related startups like Bucher Emhart Glass, CIGNA, Emerson, Eversource, General Dynamics Electric Boat, Goodrich Corp., IBM, National Institute of Standards and Technology (NIST), Otis, Pratt & Whitney, Raytheon Technologies, Sikorsky, and Travelers.

Accreditation

The computer engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

During their careers, computer engineering graduates will:

  • become successful practicing engineers or pursue another career that makes use of engineering principles and professional skills;
  • become contributing members of diverse multidisciplinary teams and successfully apply the fundamentals of their educational background; and
  • pursue professional development, including continuing or advanced education, relevant to their career path.

To achieve these objectives students are given a rigorous foundation in mathematics, physics, chemistry, mechanics, programming, and circuit theory. Then they are immersed in a sequence of required courses in digital systems, field programmable gate array (FPGA), microprocessors, electronics, computer architecture, design practice, advance computer programming, and data structures. In the senior year,students are given the choice to pursue their own areas of interest in. computer engineering and computer science through the selection of several courses in addition to Design II (senior project). Both the required courses and the senior-year courses are designed to achieve breadth and depth in the curriculum. The engineering design experience is distributed throughout the entire curriculum. The design experience begins in the first year and continues throughout the curriculum culminating with the senior capstone project.

Students must complete a 4-credit lecture and laboratory course in general chemistry. Students .also must complete two 4-credit lectures courses in calculus-based physics (including laboratory components), thus meeting the depth requirement. After taking Calculus I and II, students also take M 242 Differential Equations and ECE 320 Probability and Statistics for Computer Engineers. Students should have several computer engineering courses that integrate mathematical skills and should have these courses as co- or prerequisites.

The ability to work professionally on computer systems later, including the design and realization of such systems, is demonstrated by the progression of courses from introductory to comprehensive, including design components. Our senior capstone projects increasingly are becoming industry sponsored. The integrated design experience is obtained in the senior capstone project (ECE 483 Design II).

Through participation in the All-University curriculum and in additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their perspectives and to take part in the larger learning community of the University.

Extensive laboratory work supplements the theoretical course work through suitable hands on experience. In addition to the laboratories in the sciences, there are several required laboratory courses in engineering: Circuits I and II, Electronics I and II, Digital Logic, FPGA, microprocessors, and digital devices.

Students exercise their verbal and technical writing skills in a required writing course and in many engineering courses. Also, written and oral communication of laboratory results is required.

The student learning outcomes of the computer engineering program leading to BSCompE degree are aligned with the student learning outcomes of ABET EAC (1 through 7), and prepare graduates of the program to attain the program educational objectives.

Student outcomes (1) through (7) are articulated as follows:

(1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

(2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

(3) an ability to communicate effectively with a range of audiences

(4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

(5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

(6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

(7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Specific Criteria are as follows:

(PSC-1) knowledge of probability and statistics, including applications

(PSC-2) knowledge of Discrete Mathematics.

Academic Year First-Year Sophomore Junior Senior Total Graduates
20-21 19 17 9 17 15
19-20 18 8 9 16 14
18-19 11 16 11 12 9
17-18 18 12 8 11 7
16-17 15 10 7 11 15

Michael Doyle

Computer Engineering, 2024

As a computer engineering student at CETA, Doyle found that the project-based learning opportunities have been beneficial for building his industry knowledge and skills as a future engineer. When asked why he chose to pursue computer engineering, he shared his passion for working with computers while also maintaining a hands-on approach. He felt that computer engineering was the perfect fit, allowing him to combine his interests and skills effectively. Read more.

CETA has given me hands-on project experience allowing me to evolve my leadership skills in the academic environment."

4+1 Program (BS + MEng degrees)

The program is designed to allow full-time engineering students to earn their Bachelor of Science (BS) and Master of Engineering (MEng) degrees in five years of study. Two graduate-level courses taken in the undergraduate program may be applied to both undergraduate and graduate degree requirements. Students usually commit to the program at the start of the second semester of their junior year, and juniors who are interested should contact their department chair.

In order to be accepted into the program, students must have a 3.0 cumulative grade point average at the end of the junior year (below 3.0 will be considered on a case-by-case basis).

Contact Laurie Granstrand to learn more.

Electrical and Computer Engineering Faculty

Akram Abu-aisheh
Professor; ECE Graduate Program Director
Electrical and Computer Engineering

View Full Profile
Hisham Alnajjar
Dean; Director, Engineering Applications Center
Dean's Office for CETA

View Full Profile
Yudi Dong
Assistant Professor
Electrical and Computer Engineering

View Full Profile
Qisi Liu
Assistant Professor
Electrical and Computer Engineering

View Full Profile
Michael deAlmeida
Applied Assistant Professor
Electrical and Computer Engineering

View Full Profile
Thomas Eppes
Professor
Electrical and Computer Engineering

View Full Profile
Krista M. Hill
Associate Professor
Electrical and Computer Engineering

View Full Profile
Patricia Mellodge
Associate Professor, Program Director for Electrical Engineering
Electrical and Computer Engineering

View Full Profile
Saeid Moslehpour
Department Chair of Electrical and Computer Engineering
Electrical and Computer Engineering

View Full Profile
Carolyn Petersen
Adjunct Faculty
Electrical and Computer Engineering

View Full Profile
Bruce Plumley
Visiting Assistant Professor
Electrical and Computer Engineering

View Full Profile
Johanna Raphael
Program Director, Electromechanical Engineering Technology; Applied Assistant Professor
Electrical and Computer Engineering

View Full Profile
Brian Romano
Adjunct Faculty
Electrical and Computer Engineering

View Full Profile
Xin Shen
Assistant Professor
Electrical and Computer Engineering

View Full Profile
Hemchandra Shertukde
Professor
Electrical and Computer Engineering

View Full Profile
David Shuman
Program Director, Audio Engineering Technology; Assistant Professor
Electrical and Computer Engineering

View Full Profile
Kiwon Sohn
Associate Professor
Electrical and Computer Engineering

View Full Profile
Ying Yu
Chair, Associate Professor
Electrical and Computer Engineering

View Full Profile

Similar Programs

For Placement Only

Robotics Engineering - BS

Robotics Engineering combines electrical engineering, mechanical engineering, computer science, and many STEM fields to solve real-world problems and covers an area of engineering impacting nearly every aspect of our lives today.

For Placement Only

Computer and Electronic Engineering Technology

The computer and electronic engineering technology (CEET) program is a hands-on engineering technology program that focuses on analog and digital circuits, electronics, microprocessors, as well as fundamental computer systems and network systems.

Start Your UHart Journey Now