Triangle

Course overview

This course will provide you with the engineering knowledge and skills needed to improve productivity, reduce costs of manufacture and ensure products and services are delivered to industry when required. Manufacturing operates in a global competitive market and engineers are in great demand in the UK and abroad, in high-value sectors such as the aerospace, automotive, Fast Moving Consumer Goods (FMCG) and pharmaceutical industries.

Years one and two

The first two years provide a good grounding in the broad fundamentals of engineering science and engineering design. The science subjects studied include thermodynamics, fluid mechanics, solid mechanics, dynamics and electro-mechanical systems. In design, the emphasis is on project work and in both the first and second years, you will undertake a design, make and test project, which you will manufacture in the department's student workshop.

At the end of the second year, you can opt to switch to the four-year MEng degree provided that you have obtained at least 55% in the end of year assessment. Alternatively, you can choose to remain on the three-year BEng degree.

Year three 

Year three features a major individual project in manufacturing engineering over the full year, making up a third of your studies. In addition to compulsory manufacturing modules, you will study a range of optional modules in manufacturing, operations management and human factors. This provides you with the flexibility to tailor the course to your interests.

More information 

See also the Nottingham University Business School and the  Engineering and Science Foundation Year Programme.


Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2019 entry.

UK entry requirements
A level AAB

Please note: Applicants whose backgrounds or personal circumstances have impacted their academic performance may receive a reduced offer. Please see our contextual admissions policy for more information.

Required subjects Three A levels including A in maths and preferably physics (including a pass in the practical element), excluding General Studies, Critical Thinking, Citizenship Studies, CIE Global Perspectives and Research, CIE Thinking Skills.

A foundation year is available for those with BBB grades but not in the required subjects.
IB score 34 (6 in maths at Higher Level or 7 at Standard Level; plus preferably Physics at Higher or Standard Level) excluding Maths Studies.

Mature Students

At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.

Learning and assessment

How you will learn

How you will be assessed

Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.

Modules

Engineering Design and Design Project

In this yearlong module you'll gain a deeper understanding of engineering design principles using practical project work. You'll learn CAD from the ground up, and by the end of the module you'll be well versed in the software.

Further you'll undertake practical workshops, where you'll learn how to use fundamental engineering machinery, which forms the basis of more advanced techniques you'll learn in higher level modules.

Topics covered include:

  • Process of design supported by practical design activities
  • Engineering drawing CAD solid modelling and drawing generation  
  • Machine elements Group Design Project with Integrated Individual Element  
  • Machine shop practical training 
Materials and Manufacturing

A deep understanding of both materials and manufacturing techniques used to process these materials is essential for all product designers, to produce effective and commercially viable products. This year long module introduces students to the properties of materials, the main failure mechanisms which a designer will be concerned with (e.g overload, fracture, creep, fatigue) and core manufacturing methods used in engineering applications.

It includes the following topics:

  • Role of materials and material properties in the design process.
  • Selection and use of materials.
  • Basic science underlying material properties Approaches to avoid failure of materials.
  • Introduction to manufacturing in the UK.
  • Casting, machining, moulding, forming, powder processing, heat treatment, surface finishing and assembly.
  • Introduction into additive manufacturing an introduction to manufacturing metrology.
Mathematics for Engineers

This module introduces a range of fundamental elementary mathematical techniques that can be applied to mechanical engineering, manufacturing and product design problems.

The aim of the module is to provide engineering students with a base in mathematical knowledge which can then be built on if required in subsequent years, however as a product design student this will be the only maths module you will undertake.

This module includes:

  • The calculus of a single variable, extended to develop techniques used in analysing engineering problems
  • Advanced differential and integral calculus of one variable
  • First-order ordinary-differential equations
  • Algebra of complex numbers
  • Matrix algebra and its applications to systems of equations and eigenvalue problems
  • Functions and their properties
  • Vector spaces and their applications
  • Vector calculus
Programming, Professional and Laboratory Skills

This year long module comprises a number of elements to provide you with:

  • professional engineering, information searching, data analysis, health and safety and oral presentations 
  • laboratory skills and development of house style laboratory report
  • writing and understanding of computer programs including, loops, conditional statements, program flow, functions, basic input output, sound processing, image processing, variables, (1/2D) arrays, advanced plotting and simple computer graphics. 
  • the application of computer code to control mechanical devices as part of a group project. 
  • introduction to professional responsibilities of engineers including the fundamental role of sustainability, legal issues, patents, ethics and standards 
Statics and Dynamics

The aim of this module is to introduce students to fundamental concepts and principles of solid mechanics and dynamics, and their applications to mechanical engineering systems. A wide range of engineering structures and mechanical components need to be designed to support static loads and as an engineer it is important to understand the way in which forces are transmitted through structures for efficient and safe design. This module includes:

  • Static equilibrium: force and moment analysis in design; frictional forces.
  • Stress, strain and elasticity.
  • Bending stresses in beams.
  • Relationship between angular and linear motion.
  • Work, energy and power, including kinetic and potential energy.
  • Geared systems.
  • Static and dynamic balancing.
Thermodynamics and Fluid Mechanics 1

This is an introductory module covering the fundamental concepts and principles of thermofluids and their applications to engineering problems. Topics covered include: 

  • introductory concepts; properties of fluids, equations of state and the perfect gas law 
  • hydrostatics The first and second law of thermodynamics, including heat engines 
  • fluid dynamics: continuity, Euler and Bernoulli equations 
  • processes undergone by closed systems 
  • the steady flow energy equation 
  • momentum flows including linear momentum, friction factors and pipe flows
  • heat transfer
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Friday 16 August 2019.

Core

Design, Manufacture and Project

This module will introduce design methodology through the entire design cycle from establishing users' needs and generating creative concepts to developing fabricable engineered solutions.

You will develop knowledge of machine elements and mechanical systems and develop enhanced skills in communicating effectively in a team environment and operating machine tools for manufacturing and testing of design.

Dynamics and Control

This module aims to introduce concepts of rigid body dynamics, vibrations and feedback control, and develop the student's ability to analyse these aspects in simplified engineering situations. 

Electromechanical Devices

This module aims to explain how electricity and electronic principles can be used to achieve practical tasks in mechanical engineering, measure mechanical quantities and provide mechanical power. It also aims to give students an understanding of the importance of electrical and electronic subsystems in mechanical designs.

Topics typically covered in the module are:

  • Electrical machines and circuits
  • DC circuits, electromagnetism, capacitance, transducers
  • AC circuits, rectification, transistors, induction motor, amplifiers, combinational & sequential logic, transformers
  • Sensors: application of basic electrical and electronic principles to sensors for position, displacement, velocity, acceleration and strain, rotary sensors
  • Actuators: solenoids, stepper motor, DC permanent magnet motor
  • Signals and conversion: analog and digital data, ADCs, DACs
Management Studies 1

This module introduces students to modern management methods relevant to the running of a company.

Topics include: introduction to basic economics; the essential requirements and aims of a business; preparing a business plan; accounting; interpretation of accounts; programme management; the essentials of “lean” manufacture and the management of innovation. 

Materials in Design

This module seeks to develop an understanding of materials in design across a wide range of engineering applications. The module is arranged in 4 blocks covering designing with light alloys, polymers, composites, and functional materials. This covers important functional ceramics as well as other functional materials. Each block will explore the design requirements in detail of a particular case study followed by other examples, key material properties relevant to the engineering application, manipulation of the microstructure through processing and example calculations against failure of the product/component. This module will explore:

  • Material Attributes
  • Engineering Context
  • Manufacturing of Material
  • Production Processes
  • Environmental Impact
Mathematics and Statistics
Mechanics of Solids

The aim of this module is to introduce more advanced topics in linear elastic solid mechanics, plasticity and failure, introduce relevant analysis methods for this materials behaviour and demonstrate the application of these methods to the design of engineering components. 

Thermodynamics and Heat Transfer 2

This module develops and advances the principles of thermodynamics and how these are applied in the expression and solution of simple engineering problems as well as thermofluids and its application within building environment engineering. You’ll spend around two hours per week in lectures and two hours per week in practicals studying for this module.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Core

Individual Project

The project aims to give experience in the practice of engineering and scientific approaches at a professional level. It involves the planning, execution and reporting of a programme of work which will normally involve a mixture of experimental, and/or theoretical and and/or computational methods and analysis together with a detailed and critical review of relevant previous literature in the field. The detailed content and project balance relating to the extent of experimental/theoretical/computational/ design work is a matter for discussion between the student and his/her supervisor, factoring in the students course.

Management and Professional Practice

On completion of this module you will be able to understand how projects are selected and financially evaluated. You'll be able to construct and monitor the elements of an engineering or business programme and acquire an ability to manage risks and quality issues in the industrial and business context. You'll develop an understanding of the basics of English Law. 

Manufacturing Automation

The aim of the module is to introduce students to the fundamental concepts of manufacturing automation, present key automation technologies in manufacturing and their advantages and limitations.

The module will introduce the relevant theoretical background and fundamental concepts of different automation approaches and technologies. The focus will be placed on the role of sensors, CNC machine tools, industrial robotics and programmable logic controllers within different manufacturing contexts. Methods and indicators for quantitative production performance and cost analysis will be covered as well.

Manufacturing Systems
Engineering Sustainability – Energy, Materials and Manufacture

This module provides students with an awareness of the world resources and use of energy and material resources, factors affecting their patterns of consumption, and their environmental impacts. The economics and technologies of energy and materials supply, product manufacture, and waste disposal are also studied.

The module gives students an understanding of key principles to evaluate the potential for emerging opportunities to cost-effectively address environmental concerns of current practices.

Topics typically include:

  • Drivers for sustainability, including patterns of energy use, material consumption, waste generation, and associated environmental impacts in UK and globally.
  • Factors influencing the availability of non-renewable and renewable energy and material resources.
  • Principles for the efficient use of energy resources including energy use in buildings, heat and power generation, and heat recovery systems.
  • Life cycle assessment of engineering activities, with focus on greenhouse gas and air pollutant emissions, their impacts, and mitigation measures.
  • Economic analysis of investments in energy savings, material substitution, product design, and value recovery from end-of-life products; Cost-benefit analysis incorporating environmental externalities; and the role of government regulations in influencing business decisions.

Optional modules within the following subject areas

Business and Operations Management
Design
Human Factors
Manufacturing
Materials
Mechatronics
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

Fees and funding

UK students

£9250
Per year

International students

£21060*
Per year

*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

Scholarships and bursaries

The University of Nottingham offers a wide range of bursaries and scholarships. These funds can provide you with an additional source of non-repayable financial help. For up to date information regarding tuition fees, visit our fees and finance pages.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £2,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International/EU students

Our International Baccalaureate Diploma Excellence Scholarship is available for select students paying overseas fees who achieve 38 points or above in the International Baccalaureate Diploma. We also offer a range of High Achiever Prizes for students from selected countries, schools and colleges to help with the cost of tuition fees. Find out more about scholarships, fees and finance for international students.

Faculty-specific funding

In addition to the above, students applying to the Faculty of Engineering may be eligible for faculty-specific or industry scholarships.

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International students

We offer a range of international undergraduate scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

International scholarships

Careers

Along with an accredited engineering degree you will have gained the practical and theoretical skills needed to develop and manufacture products and the production systems to manufacture them efficiently. Your transferable skills will include effective communication and problem solving.

Professional recognition

Engineering Council accredited degree
 

This degree has been accredited by the Institute of Engineering Technology under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

This degree is recognised by the Institution of Engineering and Technology (IET).

Boost your earning potential

Which university courses boost graduate wages the most? Studying with us could help you to earn more.

  • We are second highest in the UK for female engineering graduate earnings, five years after graduation
  • We are second highest in the Midlands for male engineering graduate earnings, five years after graduation

(Source: Institute for Fiscal Studies data: www.bbc.co.uk/news/education-44413086)

Average starting salary and career progression

99.2% of undergraduates from the Department of Mechanical, Materials and Manufacturing Engineering secured work or further study within six months of graduation. £26,000 was the average starting salary, with the highest being £43,000.*

* Known destinations of full-time home undergraduates who were available for employment, 2016/17. Salaries are calculated based on the median of those in full-time paid employment within the UK.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Dummy placeholder image

Related courses

Important information

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.